Атом – сложная частица. Конспект урока "атом сложная частица" Атом сложная частица модели строения атома

Изучение строения атома практически началось в 1897-1898 гг., после того как

была окончательно установлена природа катодных лучей как потока электронов

и были определены величина заряда и масса электрона. Факт выделения

электронов самыми разнообразными веществами приводил к выводу, что электроны

входят в состав всех атомов. Но атом в целом электрически нейтрален,

следовательно, он должен содержать в себе еще другую составную часть,

заряженную положительно, причем ее заряд должен уравновешивать сумму

отрицательных зарядов электронов.

Эта положительно заряженная часть атома была открыта в 1911 г. Эрнестом

Резерфордом (1871-1937). Резерфорд предложил следующую схему строения атома.

В центре атома находится положительно заряженное ядро, вокруг которого по

разным орбитам вращаются электроны. Возникающая при их вращении центробежная

сила уравновешивается притяжением между ядром и электронами, вследствие чего

они остаются на определенных расстояниях от ядра. Суммарный отрицательный

заряд электронов численно равен положительному заряду ядра, так что атом в

целом электронейтрален. Так как масса электронов ничтожно мала, то почти вся

масса атома сосредоточена в его ядре. Наоборот, размер ядер чрезвычайно мал

даже по сравнению с размером самих атомов: диаметр атома - величина порядка

10 см, а диаметр ядра - порядка 10 - 10 см. Отсюда ясно, что на долю

ядра и электронов, число которых, как увидим дальше, сравнительно невелико,

приходится лишь ничтожная часть всего пространства, занятого атомной

системой.

Состав атомных ядер

Таким образом, открытия Резерфорда положили начало ядерной теории атома. Со

времен Резерфорда физики узнали еще очень многие подробности о строении

атомного ядра.

Самым легким атомом является атом водорода (Н). Поскольку почти вся масса атома

сосредоточена в ядре, естественно было бы предположить, что ядро атома водорода

представляет собой элементарную частицу положительного электричества, которая

была названа протоном от греческого слова “протос”, что означает

“первый”. Таким образом, протон обладает массой, практически равной массе атома

водорода (точно 1,00728 углеродных единиц) и электрическим зарядом, равным +1



(если за единицу отрицательного электричества принять заряд электрона, равный

1,602*10 Кл). Атомы других, более тяжелых элементов содержат ядра,

обладающие большим зарядом и, очевидно, большей массой.

Измерения заряда ядер атомов показали, что заряд ядра атома в указанных

условных единицах численно равен атомному, или порядковому, номеру элемента.

Однако невозможно было допустить, так как последние, будучи одноименно

заряженными, неизбежно отталкивались бы друг от друга и, следовательно, такие

ядра оказались бы неустойчивыми. К тому же масса атомных ядер оказалась

больше суммарной массы протонов, обуславливающих заряд ядер атомов

соответствующих элементов, в два раза и более.

Тогда было сделано предположение, что ядра атомов содержат протоны в числе,

превышающем атомный номер элемента, а создающийся таким образом избыточный

положительный заряд ядра компенсируется входящими в состав ядра электронами.

Эти электроны, очевидно, должны удерживать в ядре взаимно отталкивающиеся

протоны. Однако это предположение пришлось отвергнуть, так как невозможно

было допустить совместное существование в компактном ядре тяжелых (протонов)



и легких (электронов) частиц.

В 1932 г. Дж. Чедвик открыл элементарную частицу, не обладающую электрическим

зарядом, в связи с чем она была названа нейтроном (от латинского

слова neuter, что означает “ни тот, ни другой”). Нейтрон обладает массой,

немного превышающей массу протона (точно 1,008665 углеродных единиц). Вслед за

этим открытием Д. Д. Иваненко, Е. Н. Гапон и В. Гейзенберг, независимо друг от

друга, предложили теорию состава атомных ядер, ставшую общепринятой.

Согласно этой теории, ядра атомов всех элементов (за исключением водорода)

состоят из протонов и нейтронов. Число протонов в ядре определяет значение его

положительного заряда, а суммарное число протонов и нейтронов - значение его

массы. Ядерные частицы - протоны и нейтроны - объединяются под общим названием

нуклоны (от латинского слова nucleus, что означает “ядро”). Таким

образом, число протонов в ядре соответствует атомному номеру элемента, а общее

число нуклонов, поскольку масса атома в основном сосредоточена в ядре, - его

массовому числу, т.е. округленной до целого числа его атомной массе А. Тогда

число нейтронов а ядре N может быть найдено по разности между массовым числом и

атомным номером:

N = A - Z

Таким образом, протонно-нейтронная теория позволила разрешить возникшие ранее

противоречия в представлениях о составе атомных ядер и о его связи с

порядковым номером и атомной массой.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Атом- сложная частица. Урок на базе 11 класса (2 часть)

Цель урока. На основе межпредметных связей с физикой рассмотреть квантовые характеристики электронов на основе четырех квантовых чисел и основные закономерности заполнения электронных атомных орбиталей.

Представления о строении атома. Атом- неделимая частица (2500лет назад древнегреческий филосов Демокрит)

Доказательство сложности строения атома 1891 год- ирландский физик Стони- электроны. Джозеф Томсон и Жан Перрен определи и заряд и скорость электрона 1897 гол- Дж. – катодные лучи.

Доказательство сложности строения атома 1895 год- К. Рентген- рентгеновские лучи. 1896-1903 года- А. Беккерель, супруги М.и П. Кюри- явление радиоактивности.

Эрнест Резерфорд.

Модели строения атомав. 1902-1904 года- Дж. Томсон.- « Пудинг с изюмом»; 1911 год- Э.Резерфорд. – « Планетарная модель атома»; 1912 год- Постулаты Н.Бора; 1932 год- открытие нейтронов.

Нильс Бор

Элементарные частицы. частица обозначение масса заряд протон р 1 +1 нейтрон n 1 0 электрон e 0 -1

Двойственная природа частиц микромира. 1900-1905года- М. Планк и А. Эйнштейн – квант света или фотон. Фотон (частица) взаимодействие с фотопленкой (фотография атома водорода).

1925 год- Луи де Бройль- волновые свойства частиц. Интерференция (наложение). Дифракция (огибание). Вероятность.

Орбиталь. Пространство вокруг ядра атома, в котором наиболее вероятно нахождение электрона. Орбиталь включает 90% электронного облака. Здесь содержится преобладающая часть заряда и массы электрона.

Формы движения электронов. S - облако. движение в виде шара. На орбитале может быть максимально 2 электрона.

Порядок заполнения энергетических подуровней.

Квантовые числа. Главное квантовое число (n)- отражает общий запас энергии электрона, нахождение его на определенном энергетическом уровне. Количество электронных уровней совпадает с главным квантовым числом.

Квантовые числа. орбитальное квантовое число (l)- уточняет энергетическое состояние электрона, определяет форму его электронного облака. Принимает значения: s - 0; p -1; d -2; f -3.

Квантовые числа. магнитное квантовое число (m l)- описывает положение электронного облака в пространстве. Принимает значения: s - 0; p - (- 1; 0; +1) d - (- 2; -1; 0; +1; +2) f - (-3;- 2; -1; 0; +1; +2;+3) .

Квантовые числа. спиновое квантовое число (m s)- описывает вращение электрона вокруг своей оси. Принимает значения: -1\2; +1\2.

Давайте вспомним. Определите число элементарных частиц для элементов с порядковыми номерами: 37, 46, 88. Дайте определение понятиям: «химический элемент» и «изотопы». Определите число элементарных частиц для 29 63 С u , 29 65 С u . Общее число электронов у иона 24 52 С r 3+

Давайте решим. Составьте электронные схемы для элементов с порядковыми номерами 4, 6, 9, 16, 27, 36. Определите квантовые числа для них последних элетронов.

Вывод На основе межпредметных связей с физикой рассмотрели квантовые характеристики электронов на основе четырех квантовых чисел и основные закономерности заполнения электронных атомных орбиталей.

Домашнее задание. п. 1-2 Составьте электронные схемы для элементов с порядковыми номерами 5, 7, 11, 18, 26, 33. Определите квантовые числа для них последних элетронов


Атом - сложная частица

Цели: Познакомиться с историей изучения атома.

Задачи:

- образовательная: ознакомить студентов с историей изучения строения атома. Сформировать представление о современной квантовой теории строения атома.

- развивающая: (ОК 2) организовывать собственную деятельность; (ОК 6) развивать умение р аботать в коллективе и команде, общаться в группе; (ОК 4) развивать умения поиска и использование информации

- воспитательная: продолжить работу по развитию логического мышления учащихся, по формированию умения строить индуктивные выводы.

Оснащение урока:

Учебники

Схемы «Модели строения атома Томсона и Резерфорда»

Структура урока:

Эволюция научных взглядов на строение атома.

Современная квантовая модель строения атома.

Строение атомного ядра. Изотопы.

1 этап. Эволюция научных взглядов на строение атома.

1. Фундаментальные открытия, доказывающие сложность строения атома (рассказ учителя).

Дж. Томсон 1897г. Изучение природы катодных лучей.

А.Г. Столетов 1889г. Открытие явления фотоэффекта.

А. Беккерель, М. Складовская- Кюри 1896-1899гг. открытие радиоактивности химических элементов.

Э. Резерфорд 1889-1900г. Определение природы альфа частиц.

2. Модели строения атома (работа с учебником 11 класс параграф 1 стр. 3-4 по составлению таблицы).

Табл. Модели строения атомов.

Ф.И ученого

год

Описание модели

Дж. Томсон «сливовый пудинг» 1903г.

Э.Резерфорд «планетарная модель» 1911г.

Н.Бор «постулаты Бора» 1913г.

В конце 1 этапа урока уч-ся приходят к выводу о сложности строения атома.

2 этап. Современная квантовая теория строения атома.

Уч-ль рассказывает о том, что является предметом изучения квантовой механики и разграничивает понятия макро- и микромира.

Уч-ся записывают в тетрадь основные положения квантовой модели строения атома .

1.Электрон имеет двойственную природу. От частицы у него масса и заряд, а от волны - способность к дифракции, интерференции, длина, скорость движения

2. Для электрона одновременно невозможно измерить координату и скорость.

3. Электрон в атоме движется по определенной траектории и может находиться в любой части околоядерного пространства одновременно.

Пространство вокруг ядра, где вероятность нахождения электрона наибольшая, называется орбиталью.

4. Ядро состоит из нуклонов-протонов и нейтронов.

Уч-ль: Мы записали основные положения современной квантовой модели строения атома.

А теперь рассмотрим подробнее строение атома

Для начала запишем определение

2. Вся масса атома сосредоточена в ядре . Число нейтронов N = A – Z, где Z – порядковый номер.

3. Порядковый номер элемента соответствует заряду атомного ядра, т.е. числу протонов в нём . Так как атом электронейтрален, то порядковый номер элемента также соответствует числу электронов.

4. Изменение числа протонов в ядре атома химического элемента приведёт к образованию атомов другого химического элемента . Следовательно, химический элемент – это совокупность атомов с одинаковым числом протонов.

5. Изменение числа нейтронов в ядре атома химического элемента приводит к образованию изотопов.

Что такое изотоп?

Изотоп это

Уч-ль: Действительно, большинство элементов в природе представлены совокупностью изотопов. Изотопы бывают стабильными и радиоактивными, естественными и искусственными – полученными в ходе ядерных реакций. Элементы, имеющие только радиоактивные изотопы, называются радиоактивными.

Относительные атомные массы элементов вычисляют исходя из изотопного состава элементов.

Решим задачу:

Хлор представлен изотопами с массовыми числами 35 (75,4%) и 37 (24,6%). Какова его относительная атомная масса?

После решения уч-ся предлагается составить обратную задачу, используя данные ответа.

Атом - сложная частица

Цели урока: обобщить сведения о важнейших открытиях физики XIX -XX вв., доказывающих сложность строения атомов химических элементов; научить объяснять строение атома, опираясь на некоторые модели классической теории; закрепить знание современных представлений о строении атома на основе квантовой механики.

Основные понятия: макромир, микромир, квантовая механика, нуклоны (протоны, нейтроны), нуклиды, изотопы, корпускулярно-волновой дуализм частиц микромира, химический элемент.

Оборудование: ПСХЭ Д. И. Менделеева, таблицы «Строение атома».

Ход урока

I. Организационный момент

Приветствие учителя. Проверка готовности к уроку.

II. Изучение нового материала

План изложения

1. Важнейшие открытия физики конца XIX-начала XX века.

2. Модели классической теории строения атома, объяснение их несостоятельности.

3. Современные представления о строении атома на основе квантовой механики. Протонно-нейтронная теория.

4. Нуклиды - различные вилы атомов. Изотопы. Изотопы водорода.

5. Формы существования химического элемента.

1. Желательно по первому пункту плана зачитать на с. 3 учебника понятие «атом», фундаментальные открытия, доказывающие сложность строения атома, с последующей записью в рабочую тетрадь.

В 1904 г. Дж. Томсон предлагает модель атома под названием «сливовый пудинг». Атом в целом электронейтрален, так как он подобен сферической капле пудинга с положительным зарядом, внутрь сферы которого вкраплены отрицательно заряженные сливины-электроны, совершающие колебательные движения, благодаря которым атом излучает электромагнитную энергию. Однако эта модель не была экспериментально подтверждена и осталась гипотезой.

В 1911 г. Э. Резерфорд предлагает планетарную модель атома. Подобно движению планет по замкнутым орбитам вокруг Солнца модель атома есть положительно заряженное ядро и электроны, вращающиеся вокруг ядра по замкнутым стационарным орбитам. Однако данная модель не могла объяснить явления излучения и поглощения энергии атомом. Э. Резерфорд считается основоположником современного учения об атоме, его теоретической моделью строения атома мы пользуемся и сейчас.

В 1900 г. М. Планк, в 1905 г. А. Эйнштейн и Н. Бор внесли теоретические идеи и квантовые представления в планетарную модель Э. Резерфорда - постулаты (постулат - утверждение, принимаемое без доказательства).

Первый постулат: электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным круговым орбитам. Эти орбиты получили название стационарных. При этом энергия атомом не поглощается и не излучается.

Второй постулат: излучение или поглощение энергии атомом происходит при скачкообразном переходе электрона с одной стационарной орбиты на другую. При этом испускается или поглощается отдельная порция энергии - квант.

Н Бор внес квантовые представления о строении атома, но он использовал традиционные классические понятия механики, рассматривая электрон как частицу, движущуюся со строго определенными скоростями по строго определенным траекториям. Его теория была важным этапом в развитии представлений о строении атома.

Гипотеза, предложенная М. Планком и А. Эйнштейном о световых квантах (фотонах) показана, что нельзя автоматически распространять законы природы, справедливые для большинства тел - объектов макромира, на ничтожно малые объекты - микромира (атомы, электроны и т.д.)

В 20-х годах XX столетия после возникновения и развития новой отрасли теоретической физики - квантовой или волновой механики - была решена задача описания свойств и поведения частиц микромира. Эта теория характеризует частицы микромира как объекты с двойственной природой - корпускулярно-волновым дуализмом: одновременно они являются и частицами (корпускулами) и волнами. Корпускулярно-волновой дуализм объектов микромира подтвержден и экспериментально знакомыми из курса физики интерференцией и дифракцией электронов. Интерференция - наложение волн друг на друга. Дифракция - огибание волной препятствия. Это доказывает наличие v электрона волновых свойств. Почернение фотослоя лишь в одном месте свидетельствует о наличии у него корпускулярных свойств. Будь электрон только волной, он более или менее равномерно засвечивал бы фотопластинку (рис. 1 с. 5 учебника).

В 1932 г. была разработана протонно-нейтронная теория ядра , согласно которой ядра атомов состоят из протонов, имеющих заряд +1 и массу 1, и нейтронов, имеющих заряд 0 и массу 1. Их называют нуклонами.

Атом - электронейтральная система взаимодействующих элементарных частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов.

Порядковый номер элемента в ПСХЭ Д.И. Менделеева соответствует заряду ядра атома, т. е. указывает на число протонов в нем. Число нейтронов определяется по формуле N=A-Z , где А - массовое число, Z - порядковый номер элемента. Количество электронов в атоме соответствует порядковому номеру элемента в ПСХЭ.

Пример: Порядковый номер элемента - 25. Массовое число 55. Каков состав его атома?

Ответ: Заряд ядра атома +25; в ядре атома 25 протонов, нейтронов 55 - 25 = 30; в атоме 25 электронов.

Вопрос: Чего следует ожидать, если в атоме изменить число а) протонов; б) нейтронов?

Ответ: Изменение числа протонов в атоме приводит к образованию нового химического элемента т.к. изменяется заряд ядра атома.

Изменение числа нейтронов в атоме приводит к изменению атомной массы элемента, заряд ядра атома не изменяется. Образуются изотопы - разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядра, но разную относительную атомную массу.

Пример: Изотопы хлора: +17 Сl , ат. масса 35, и +17 Сl, ат. масса 37; изотопы калия +19 К, ат. масса 39, и +19 К, ат. масса 40.

Свойства изотопов одного и того же элемента одинаковы, т. к. имеют одинаковый заряд ядра, хотя их относительная атомная масса разная, т.к. они содержат разное число нейтронов; изменение атомной массы элементов незначительно - оно имеет долевое значение.

Изотопы водорода имеют собственные названия и химические знаки:

Протий - Н - имеет заряд ядра +1 и массу атома 1, нейтронов в ядре нет.

Дейтерий - D - имеет заряд ядра атома +1 и массу атома 2, нейтронов в ядре - I.

Тритий - Т имеет заряд ядра атома +1 и массу атома 3, нейтронов в ядре - 2.

Вопрос: Почему изотопы водорода существенно отличаются по свойствам?

Ответ: Изотопы водорода имеют изменение массы весьма существенное - в кратное значение раз.

На основании вышеизложенного следует дать современную трактовку химического элемента.

Химический элемент - это совокупность атомов с одинаковым зарядом ядра, т. е. с одинаковым числом протонов в нем.

Известны следующие формы (способы) существования химического элемента: свободные атомы, простые вещества, сложные вещества.

Пример: Водород может существовать в виде свободных атомов, в виде двухатомных молекул, а так же входить в состав молекул сложного вещества.

Взаимосвязь содержания и формы на примере трех форм существования химического элемента

Простые вещества

Один и тот же химический элемент

Разные простые вещества

Аллотропы

Аллотропы: кислород - O 2 и O 3 - озон

Сложные вещества

Один и тот же состав (молекулярная формула)

Разные сложные вещества

Изомеры

С 2 Н 6 O - соответствует соединениям: спирт С 2 Н 5 ОН и эфир Н 3 С-О-СН 3

Вывод: содержание и форма взаимосвязаны между собой. Определяющая роль отводится содержанию (заряд атомного ядра, состав простых и сложных веществ), но и форма не пассивна, она влияет на содержание (изотопы, аллотропы, изомеры).

III. Закрепление по узловым вопросам темы

Работа с вопросами № 1, 2, 3, 4 § 1.

Учащиеся зачитывают вопрос параграфа и дают ответ на него согласно конспекта в рабочей тетради или согласно текста учебника.

IV. Домашнее задание

§1. Определить состав атомов № 13, № 56, № 30, № 101

Ответить на вопрос, чем сходны и чем различны атомы аргона с массами 39 и 40.

Понятие «атом» было известно ещё в древности и использовалось для описания представлений об устройстве окружающего мира древнегреческими философами, так Левкипп (500-200 гг. до н.э.) утверждал, что мир состоит из мельчайших частиц и пустоты, а Демокрит назвал эти частицы атомами и считал, что они существуют вечно и способны двигаться. По представлениям древних философов атомы были настолько малы, что не могли быть измерены, а форма и внешнее различие придают свойства определенным телам. Например, атомы железа должны обладать «зубцами», чтобы зацепляться друг за друга и образовывать твердое тело, атомы же воды, напротив, должны быть гладкими и перекатываться, чтобы обеспечивать воде текучесть. Первое предположение о способности атомов самостоятельно взаимодействовать друг с другом было сделано Эпикуром.

Создателем атомно-молекулярного учения считают М.В. Ломоносова, он различал в строении вещества две ступени: элементы (атомы, в нашем понимании) и корпускулы (молекулы). Ломоносов утверждал, что простые вещества состоят из атомов одного вида, а сложные – из различных атомов.

Всемирное признание атомно-молекулярная теория получила благодаря Дж. Дальтону, который, в отличии от древнегреческих философов при формулировании своих утверждений опирался только на экспериментальные данные. Дж. Дальтон ввел одну из важнейших характеристик атома – атомную массу, относительные значения которой были установлены для ряда элементов. Но, несмотря сделанные им открытия атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома: открытие фотоэффекта (испускание носителей электрического заряда с поверхности металлов при их освещении), катодных (поток отрицательно заряженных частиц – электронов, в трубке, в которой имеется катод и анод) и рентгеновских лучей (испускание веществами сильного электромагнитного излучения, подобного видимому свету, но более высокочастотного, при действии на эти вещества катодных лучей), радиоактивности (самопроизвольное превращение одного элемента в другой, при котором происходит испускание электронов, положительно заряженных и других частиц, а также рентгеновского излучения) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой. Эти открытия дали толчок к созданию первых моделей строения атома.

Одна из первых моделей атома была разработана У. Томсоном (1902) По мнению У. Томсона атом – сгусток положительно заряженной материи, внутри – равномерно распределены электроны, а атом водорода представляет собой положительно заряженный шар, внутри которого электрон (рис. 1а). Эту модель была доработана Дж. Томсоном (1904) (рис.1б). В том же году японский физик Х. Нагаока предложил «сатурнианскую модель» строения атома, предполагая, что атом подобен планете Сатурну – в центре ядро, окруженное кольцами, по которым движутся электроны (рис.1в).

Ещё одну модель предложил немецкий физик Филипп фон Ленард, согласно которой атом состоит из нейтральных частиц крайне малых размеров (вследствие чего, большая часть атома – пустота), каждая из которых – электрический дуплет (рис. 1г).

Рис. 1. Модели строения атома: а – У. Томсона; б – Дж.Томсона; в – Х. Нагаока; г – Ф.Ленарда

После опытов с -частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома, похожую на строение солнечной системы (маленькое положительно заряженное ядро в центре атома, в котором заключена почти вся масса атома, вокруг которого по орбитам движутся электроны). Планетарная модель подверглась дальнейшему развитию в работах Н. Бора, А. Зоммерфельда и др.

Современная модель строения атома основана на знаниях квантовой механики, главный тезис которой – микрочастицы имеют волновую природу, а волны — свойства частиц. Квантовая механика рассматривает вероятность нахождения электрона вокруг ядра. Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

Изотопы

Изотопы – атомы, обладающие одинаковым зарядом ядра, но разной массой. Такие атомы обладают практически одинаковым строением электронной оболочки и принадлежат одному элементу. Исследование природных соединений разных элементов показывает существование устойчивых изотопов у большинства элементов периодической системы. Для всех элементов периодической системы число изотопов, встречающихся в природе, достигает 280.

Самым ярким примером изотопии можно назвать изотопы водорода –водород, дейтерий и тритий. В природе встречаются водород и дейтерий. Тритий получается искусственно.

Неустойчивые изотопы, т.е., обладающие способностью самопроизвольно распадаться называют радиоактивными изотопами. Они также могут встречаться в природных соединениях некоторых элементов.

Состав ядра атома. Ядерные реакции

В ядре атома содержится множество элементарных частиц, самые важные из которых – протон (p) и нейтрон (n). Масса протона 1,0073 а.е.м., заряд +1, в то время как нейтрон электронейтрален (заряд 0) и обладает массой 1,0087 а.е.м.

Согласно протонно-нейтронной теории строения ядра (Д.Д. Иваненко, Е.Н. Гапон, 1932) ядра всех атомов, исключая водород, состоят из Z протонов и (А-Z) нейтронов (Z – порядковый номер элемента, А – массовое число). Число электронов равно числу протонов.

где N – число нейтронов.

Свойства ядра определяются его составом (чиcлом p и n). Так, например, в атоме кислорода 16 8 О 8 протонов и 16-8=8 нейтронов, что кратко записывается 8p, 8n.

Внутри ядер p и n могут превращаться (при определенных условиях) друг в друга:

где e + — позитрон (элементарная частица с массой, равной массе электрона т зарядом +1), а и — нейтрино и антинейтрино, элементарные частицы с массой и зарядом равными нулю, отличающимися только спином.

Ядерные реакции – превращения атомных ядер, в результате их взаимодействия с элементарными частицами или друг с другом. При написании уравнений ядерных реакций необходимо учитывать законы сохранения массы и заряда. Например: 27 13 Al + 4 2 He = 30 14 Si + 1 1 H.

Особенность ядерных реакций – выделение огромного количества энергии в форме кинетической энергии образующихся частиц или излучения.

Задания:

1. Определите число протонов, нейтронов и электронов в атомах S, Se, Al, Ru.

2. Закончите ядерные реакции: 14 7 N + 4 2 He = ; 12 6 C + 1 0 n =.

Ответы:

1. S: Z= 16, А = 32, следовательно 16p, 16e, 32-16=16n

Se: Z= 34, А = 79, следовательно 34p, 34e, 79-34=45n

Al: Z= 13, А = 27, следовательно 13p, 13e, 27-13=14n

Ru: Z= 44, А = 101, следовательно 44p, 44e, 101-44=57n

2. 14 7 N + 4 2 He = 17 8 О + 1 1 Н

12 6 C + 1 0 n = 9 4 Be + 4 2 He