Sr oh 2 сильное или слабое. Неорганические кислоты

Кислоты можно классифицировать исходя из разных критериев:

1) Наличие атомов кислорода в кислоте

2) Основность кислоты

Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H + , а также замещаться на атомы металла:

4) Растворимость

5) Устойчивость

7) Окисляющие свойства

Химические свойства кислот

1. Способность к диссоциации

Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

либо в таком виде: HCl = H + + Cl —

либо в таком: HCl → H + + Cl —

По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

CH 3 COOH CH 3 COO — + H +

Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H + :

H 3 PO 4 H + + H 2 PO 4 —

H 2 PO 4 — H + + HPO 4 2-

HPO 4 2- H + + PO 4 3-

Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H 3 PO 4 диссоциируют лучше (в большей степени), чем ионы H 2 PO 4 — , которые, в свою очередь, диссоциируют лучше, чем ионы HPO 4 2- . Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H + .

Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

H 2 SO 4 2H + + SO 4 2-

2. Взаимодействие кислот с металлами

Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H 2 SO 4(конц.) и HNO 3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

H 2 SO 4(разб.) + Zn ZnSO 4 + H 2

2HCl + Fe FeCl 2 + H 2

Что касается кислот-сильных окислителей, т.е. H 2 SO 4 (конц.) и HNO 3 , то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

3. Взаимодействие кислот с основными и амфотерными оксидами

Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

H 2 SO 4 + ZnO ZnSO 4 + H 2 O

6HNO 3 + Fe 2 O 3 2Fe(NO 3) 3 + 3H 2 O

H 2 SiO 3 + FeO ≠

4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

HCl + NaOH H 2 O + NaCl

3H 2 SO 4 + 2Al(OH) 3 Al 2 (SO 4) 3 + 6H 2 O

5. Взаимодействие кислот с солями

Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

H 2 SO 4 + Ba(NO 3) 2 BaSO 4 ↓ + 2HNO 3

CH 3 COOH + Na 2 SO 3 CH 3 COONa + SO 2 + H 2 O

HCOONa + HCl HCOOH + NaCl

6. Специфические окислительные свойства азотной и концентрированной серной кислот

Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO 3 и концентрированной H 2 SO 4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:

7. Восстановительные свойства бескислородных кислот

Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

4HCl + MnO 2 MnCl 2 + Cl 2 + 2H 2 O

16HBr + 2KMnO 4 2KBr + 2MnBr 2 + 8H 2 O + 5Br 2

14НI + K 2 Cr 2 O 7 3I 2 ↓ + 2Crl 3 + 2KI + 7H 2 O

Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

6HI + Fe 2 O 3 2FeI 2 + I 2 ↓ + 3H 2 O

2HI + 2FeCl 3 2FeCl 2 + I 2 ↓ + 2HCl

Высокой восстановительной активностью обладает также и сероводородная кислота H 2 S. Ее может окислить даже такой окислитель, как диоксид серы.

Сущ., кол во синонимов: 171 абсцизин (2) агарицин (1) адипил (1) … Словарь синонимов

1 капля Альбом ремиксов СЛОТ Дата выпуска 2008 Записан … Википедия

Сущ., ж., употр. сравн. часто Морфология: (нет) чего? кислоты, чему? кислоте, (вижу) что? кислоту, чем? кислотой, о чём? о кислоте; мн. что? кислоты, (нет) чего? кислот, чему? кислотам, (вижу) что? кислоты, чем? кислотами, о чём? о кислотах 1.… … Толковый словарь Дмитриева

КИСЛОТА, кислоты, мн. кислоты, жен. 1. только ед. отвлеч. сущ. к кислый, что нибудь кислое (разг.). Я попробовал, чувствую: кислота какая то. 2. Химическое соединение, обладающее кислым вкусом и окрашивающее синий лакмус в красный цвет (хим.).… … Толковый словарь Ушакова

КИСЛОТА, ы, мн. оты, от, жен. Химическое соединение, содержащее водород, дающее при реакции с основаниями (в 8 знач.) соли и окрашивающее лакмусовую бумагу в красный цвет. Азотная, уксусная к. | прил. кислотный, ая, ое. К. краситель. К. дождь (с… … Толковый словарь Ожегова

КИСЛОТА 1, Шы, мн. оты, от, ж. Химическое соединение, содержащее водород, дающее при реакции с основаниями (в 8 знач.) соли и окрашивающее лакмусовую бумагу в красный цвет. Азотная, уксусная к. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова … Толковый словарь Ожегова

См. кислый 1. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

кислота - КИСЛОТА, ы, ж Химическое соединение, обычно кислого вкуса, содержащее водород, способный замещаться металлом при образовании соли. Кислота окрашивает лакмусовую бумагу в красный цвет … Толковый словарь русских существительных

КИСЛОТА, химическое соединение, содержащее водород, который может быть замещен металлом или другим положительным ионом с образованием соли. Кислоты растворяются в воде с получением ионов водорода (Н+), то есть действуют как источник протонов;… … Научно-технический энциклопедический словарь

Кислота, ы; мн. кислоты, кислот … Русское словесное ударение

Ж. 1. Химическое соединение, содержащее водород, способный замещаться металлом при образовании соли. 2. То, что своими свойствами цветом, запахом, едкостью и т.п. напоминает такое химическое соединение. Толковый словарь Ефремовой. Т. Ф. Ефремова … Современный толковый словарь русского языка Ефремовой

Книги

  • Кислота (DVD) , Горчилин Александр. Саша и Петя живут безбашенной жизнью музыкантов современной техно-Москвы: громкие вечеринки, взлеты и падения, колесо нестабильных отношений с окружающими и собой. Они - поколение…
  • Кислота , Дарья Кова. Бывает страсть, которая пожирает тебя, жжет, выжигает все на своем пути. Как кислота. Она не созидает, а разрушает тебя. Под такой накал попала и я, простая девчонка изпригорода, которая…

Немного теории

Кислоты

Кислоты ― это сложные вещества, образованные атомами водорода, способными замещаться на атомы металла и кислотными остатками.

Кислоты - это электролиты, при диссоциации которых образуются только катионы водорода и анионы кислотных остатков.

Классификация кислот

Классификация кислот по составу

Классификация кислот по числу атомов водорода

Классификация кислот на сильные и слабые кислоты.

Химические свойства кислот

  • Взаимодействие с основными оксидами с образованием соли и воды:
  • Взаимодействие с амфотерными оксидами с образованием соли и воды:
  • Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации) :
  • Взаимодействие с солями, если выпадает осадок или выделяется газ:
  • Сильные кислоты вытесняют более слабые из их солей:

(в данном случае образуется неустойчивая угольная кислота , которая сразу же распадается на воду и углекислый газ)

- лакмус становится красным

Метилоранж становится красным.

Получение кислот

1. водород+неметалл
H 2 + S → H 2 S
2. кислотный оксид+ вода
P 2 O 5 + 3H 2 O →2H 3 PO 4
Исключение :
2NO 2 + H 2 O →HNO 2 + HNO 3
SiO 2 + H 2 O -не реагирует
3. кислота+соль
В продукте реакции должен образовываться осадок, газ или вода. Обычно более сильные кислоты вытесняют менее сильные кислоты из солей. Если соль нерастворима в воде, то она реагирует с кислотой, если образуется газ.
Na 2 CO 3 + 2HCl →2NaCl + H 2 O + CO 2
K 2 SiO 3 + H 2 SO 4 → K 2 SO 4 + H 2 SiO 3

Основания

Основания (осно́вные гидрокси́ды) - сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН−. Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

Классификация оснований

1. По растворимости в воде.
Растворимые основания
(щёлочи): гидроксид натрия NaOH, гидроксид калия KOH, гидроксид бария Ba(OH)2, гидроксид стронция Sr(OH)2, гидроксид цезия CsOH, гидроксид рубидия RbOH.
Практически нерастворимые основания
: Mg(OH)2, Ca(OH) 2 , Zn(OH) 2 , Cu(OH) 2
Деление на растворимые и нерастворимые основания практически полностью совпадает с делением на сильные и слабые основания, или гидроксиды металлов и переходных элементов
2. По количеству гидроксильных групп в молекуле.
- Однокислотные (гидроксид натрия NaOH)
- Двукислотные (гидроксид меди(II) Cu(OH) 2 )
- Трехкислотные (гидроксид железа(III) In(OH) 3 )
3. По летучести.
- Летучие : NH3
- Нелетучие : щёлочи, нерастворимые основания.
4. По стабильности.
- Стабильные: гидроксид натрия NaOH, гидроксид бария Ba(OH)2
- Нестабильные: гидроксид аммония NH3·H2O (гидрат аммиака).
5. По степени электролитической диссоциации.
- Сильные (α > 30 %): щёлочи.

Слабые (α < 3 %): нерастворимые основания.

Получение

  • Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь.

Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.
  • Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.
  • Также основание можно получить при взаимодействия щелочного или щелочноземельного металла с водой.
  • Гидроксиды щелочных металлов в промышленности получают электролизом водных растворов солей:
  • Некоторые основания можно получить обменными реакциями:


Химические свойства

  • В водных растворах основания диссоциируют, что изменяет ионное равновесие:

это изменение проявляется в цветах некоторых
кислотно-основных индикаторов :
лакмус становится синим,
метилоранж - жёлтым,
фенолфталеин
приобретает цвет фуксии .
  • При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:

Примечание:
реакция не идёт, если и кислота и основание слабые .
  • При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:

  • Растворимые основания могут реагировать с амфотерными гидроксидами с образованием гидроксокомплексов:
  • Основания реагируют с кислотными или амфотерными оксидами с образованием солей:

  • Растворимые снования вступают в обменные реакции с растворимыми солями:

Сложные вещества, состоящие из атомов водорода и кислотного остатка, называются минеральными или неорганическими кислотами. Кислотным остатком являются оксиды и неметаллы, соединённые с водородом. Главное свойство кислот - способность образовывать соли.

Классификация

Основная формула минеральных кислот - H n Ac, где Ac - кислотный остаток. В зависимости от состава кислотного остатка выделяют два типа кислот:

  • кислородные, содержащие кислород;
  • бескислородные, состоящие только из водорода и неметалла.

Основной список неорганических кислот в соответствии с типом представлен в таблице.

Тип

Название

Формула

Кислородные

Азотистая

Дихромовая

Йодноватая

Кремниевые - метакремниевая и ортокремниевая

H 2 SiO 3 и H 4 SiO 4

Марганцовая

Марганцовистая

Метафосфорная

Мышьяковая

Ортофосфорная

Сернистая

Тиосерная

Тетратионовая

Угольная

Фосфористая

Фосфорноватистая

Хлорноватая

Хлористая

Хлорноватистая

Хромовая

Циановая

Бескислородные

Фтороводородная (плавиковая)

Хлороводородная (соляная)

Бромоводородная

Йодоводородная

Сероводородная

Циановодородная

Кроме того, в соответствии со свойствами кислоты классифицируются по следующим признакам:

  • растворимость : растворимые (HNO 3 , HCl) и нерастворимые (H 2 SiO 3);
  • летучесть : летучие (H 2 S, HCl) и нелетучие (H 2 SO 4 , H 3 PO 4);
  • степень диссоциации : сильные (HNO 3) и слабые (H 2 CO 3).

Рис. 1. Схема классификации кислот.

Для обозначения минеральных кислот используются традиционные и тривиальные названия. Традиционные названия соответствуют наименованию элемента, который образует кислоту с добавлением морфем -ная, -овая, а также -истая, -новатая, -новатистая для обозначения степени окисления.

Получение

Основные методы получения кислот представлены в таблице.

Свойства

Большинство кислот - жидкости с кислым вкусом. Вольфрамовая, хромовая, борная и несколько других кислот находятся в твёрдом состоянии при нормальных условиях. Некоторые кислоты (Н 2 СО 3 , H 2 SO 3 , HClO) существуют только в виде водного раствора и относятся к слабым кислотам.

Рис. 2. Хромовая кислота.

Кислоты - активные вещества, реагирующие:

  • с металлами:

    Ca + 2HCl = CaCl 2 + H 2 ;

  • с оксидами:

    CaO + 2HCl = CaCl 2 + H 2 O;

  • с основанием:

    H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O;

  • с солями:

    Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O.

Все реакции сопровождаются образованием солей.

Возможна качественная реакция с изменением цвета индикатора:

  • лакмус окрашивается в красный;
  • метил оранж - в розовый;
  • фенолфталеин не меняется.

Рис. 3. Цвета индикаторов при взаимодействии кислоты.

Химические свойства минеральных кислот определяются способностью диссоциироваться в воде с образованием катионов водорода и анионов водородных остатков. Кислоты, реагирующие с водой необратимо (диссоциируются полностью) называются сильными. К ним относятся хлорная, азотная, серная и хлороводородная.

Что мы узнали?

Неорганические кислоты образованы водородом и кислотным остатком, которым являются атомы неметалла или оксид. В зависимости от природы кислотного остатка кислоты классифицируются на бескислородные и кислородсодержащие. Все кислоты имеют кислый вкус и способны диссоциироваться в водной среде (распадаться на катионы и анионы). Кислоты получают из простых веществ, оксидов, солей. При взаимодействии с металлами, оксидами, основаниями, солями кислоты образуют соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 98.

12.4. Сила кислот и оснований

Направление смещения кислотно-основного равновесия определятся следующим правилом:
Кислотно-основные равновесия смещены в сторону более слабой кислоты и более слабого основания.

Кислота тем сильнее, чем легче она отдает протон, а основание тем сильнее, чем легче оно принимает протон и прочнее его удерживает. Молекула (или ион) слабой кислоты не склонна отдавать протон, а молекула (или ион) слабого основания не склонна его принимать, этим и объясняется смещение равновесия в их сторону. Силу кислот, а также силу оснований можно сравнивать только в одном и том же растворителе
Так как кислоты могут реагировать с разными основаниями, то соответствующие равновесия будут смещены в ту или иную сторону в разной степени. Поэтому для сравнения силы разных кислот определяют, насколько легко эти кислоты отдают протоны молекулам растворителя. Аналогично определяется и сила оснований.

Вы уже знаете, что молекула воды (растворителя) может и принимать, и отдавать протон, то есть проявляет и свойства кислоты, и свойства основания. Поэтому и кислоты, и основания можно сравнивать между собой по силе в водных растворах. В одном и том же растворителе сила кислоты в значительной степени зависит от энергии рвущейся связи А-Н, а сила основания – от энергии образующейся связи В-Н.
Для количественной характеристики силы кислоты в водных растворах можно использовать константу кислотно-основного равновесия обратимой реакции данной кислоты с водой:
HА + Н 2 О А + H 3 O .

Для характеристики силы кислоты в разбавленных растворах, в которых концентрация воды практически постоянна, пользуются константой кислотности :

,

где K к (HA) = K c ·.

Совершенно аналогично для количественной характеристики силы основания можно использовать константу кислотно-основного равновесия обратимой реакции данного основания с водой:

А + Н 2 О НА + ОН ,

а в разбавленных растворах – константу основности

, где K о (HA) = K c ·.

Практически для оценки силы основания используют константу кислотности кислоты, получающейся из данного основания (так называемой " сопряженной " кислоты), так как эти константы связаны простым соотношением

К о (А ) = К (Н 2 О)/К к (НА).

Иными словами, основание тем сильнее, чем слабее сопряженная кислота. И наоборот, кислота тем сильнее, чем слабее сопряженное основание .

Константы кислотности и основности, как правило, определяются экспериментально. Значения констант кислотности различных кислот приведены в приложении 13, а значения констант основности оснований – в приложении 14.
Для оценки того, какая часть молекул кислоты или основания в состоянии равновесия подверглась реакции с водой, используется величина, аналогичная (и однородная) мольной доле и называемая степенью протолиза (). Для кислоты НА

.

Здесь величина с индексом " пр" (в числителе) характеризует прореагировавшую часть молекул кислоты НА, а величина с индексом " исх" (в знаменателе) – исходную порцию кислоты.
В соответствии с уравнением реакции

n пр (HA) = n (H 3 O ) = n (A ) c пр (HA) = c (H 3 O ) = c (A );
= = a · с исх (НА);
= (1 – a) · с исх (НА).

Подставив эти выражения в уравнение константы кислотности, получим

Таким образом, зная константу кислотности и общую концентрацию кислоты, можно определить степень протолиза этой кислоты в данном растворе. Аналогично через степень протолиза можно выразить и константу основности основания, поэтому в общем виде

Это уравнение представляет собой математическое выражение закона разбавления Оствальда . Если растворы разбавленные, то есть исходная концентрация не превышает 0,01 моль/л, то можно использовать приближенное соотношение

K = 2 ·c исх.

Для грубой оценки степени протолиза это уравнение можно использовать и при концентрациях до 0,1 моль/л.
Кислотно-основные реакции – процессы обратимые, но не всегда. Рассмотрим поведение в воде молекул хлороводорода и фтороводорода:

Молекула хлороводорода отдает протон молекуле воды и превращается в хлорид-ион. Следовательно, в воде хлороводород проявляет свойства кислоты, а сама вода – свойства основания . Тоже происходит и с молекулой фтороводорода, и, следовательно, фтороводород тоже проявляет свойства кислоты. Поэтому водный раствор хлороводорода называют хлороводородной (или соляной) кислотой, а водный раствор фтороводорода – фтороводородной (или плавиковой) кислотой. Но между этими кислотами есть существенное различие: соляная кислота реагирует с избытком воды необратимо (полностью), а плавиковая – обратимо и незначительно. Следовательно, молекула хлороводорода легко отдает протон молекуле воды, а молекула фтороводорода делает это с трудом. Поэтому соляная кислота относится к сильным кислотам , а плавиковая – к слабым.

Сильные кислоты: HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SO 4 , H 2 SeO 4 , HNO 3 и некоторые другие.
Теперь обратим внимание на правые части уравнений реакций с водой хлороводорода и фтороводорода. Фторид-ион может принимать протон (отрывая его у иона оксония) и превращаться в молекулу фтороводорода, а хлорид-ион не может. Следовательно, фторид-ион проявляет свойства основания, а хлорид-ион таких свойств не проявляет (но только в разбавленных растворах).
Как и кислоты, существуют сильные и слабые основания .

К сильным веществам-основаниям относятся все хорошо растворимые ионные гидроксиды (их называют еще " щелочами " ), так как при их растворении в воде гидроксид-ионы полностью переходят в раствор.

К слабым основаниям относится NH 3 (К О = 1,74· 10 –5) и некоторые другие вещества. К ним же относятся и практически нерастворимые гидроксиды элементов, образующих металлы, (" гидроксиды металлов") потому, что при взаимодействии этих веществ с водой в раствор переходит лишь ничтожное количество гидроксид-ионов.
Слабые основания-частицы (их еще называют " анионные основания" ): F , NO 2 , SO 3 2 , S 2 , CO 3 2 , PO 4 3 и другие анионы, образующиеся из слабых кислот.
Не обладают основными свойствами анионы Cl , Br , I , HSO 4 , NO 3 и другие анионы, образующиеся из сильных кислот
Не обладают кислотными свойствами катионы Li , Na , K , Ca 2 , Ba 2 и другие катионы, входящие в состав сильных оснований.

Кроме частиц-кислот и частиц-оснований, существуют еще частицы, проявляющие и кислотные, и основные свойства. Такие свойства молекулы воды вам уже известны. Кроме воды, это гидросульфит-ион, гидросульфид-ион и другие аналогичные ионы. Например, HSO 3 проявляет как свойства кислоты
HSO 3 + H 2 O SO 3 + H 3 O , так и свойства основания
HSO 3 + H 2 O H 2 SO 3 + OH .

Подобные частицы называются амфолитами .

Большинство частиц-амфолитов представляют собой молекулы слабых кислот, потерявшие часть протонов (HS , HSO 3 , HCO 3 , H 2 PO 4 , HPO 4 2 и некоторые другие). Анион HSO 4 не проявляет основных свойств и является довольно сильной кислотой (К К = 1,12 . 10 –2), а потому к амфолитам не относится. Соли, в состав которых входят такие анионы, называются кислыми солями .

Примеры кислых солей и их названий:

Как вы уже, наверное, заметили, у кислотно-основных и окислительно-восстановительных реакций есть много общего. Проследить общие черты и найти отличия этих типов реакций вам поможет схема, изображенная на рисунке 12.3.

СИЛА КИСЛОТЫ, СИЛА ОСНОВАНИЯ, КОНСТАНТА КИСЛОТНОСТИ, КОНСТАНТА ОСНОВНОСТИ, СОПРЯЖЕННАЯ КИСЛОТА, СОПРЯЖЕННОЕ ОСНОВАНИЕ, СТЕПЕНЬ ПРОТОЛИЗА, ЗАКОН РАЗБАВЛЕНИЯ ОСТВАЛЬДА, СИЛЬНАЯ КИСЛОТА, СЛАБАЯ КИСЛОТА, СИЛЬНОЕ ОСНОВАНИЕ, СЛАБОЕ ОСНОВАНИЕ, ЩЕЛОЧЬ, АНИОННОЕ ОСНОВАНИЕ, АМФОЛИТЫ, КИСЛЫЕ СОЛИ
1.Какая из кислот в большей степени склонна отдавать протон в водном растворе а) азотная или азотистая, б) серная или сернистая, в) серная или соляная, г) сероводородная или сернистая? Составьте уравнения реакций. В случае обратимых реакций запишите выражение для констант кислотности.
2.Сравните энергию атомизации молекул HF и HCl. Согласуются ли эти данные с силой плавиковой и соляной кислот?
3.Какая частица является более сильной кислотой: а) молекула угольной кислоты или гидрокарбонат-ион, б) молекула фосфорной кислоты, дигидрофосфат-ион или гидрофосфат-ион, в) молекула сероводорода или гидросульфид-ион?
4.Почему в приложении 13 вы не найдете константы кислотности серной, соляной, азотной и некоторых других кислот?
5.Докажите справедливость соотношения, связывающего константу основности и константу кислотности сопряженных кислоты и основания.
6.Запишите уравнения реакций с водой а) бромоводорода и азотистой кислоты, б) серной и сернистой кислот, в) азотной кислоты и сероводорода. В чем отличия этих процессов?
7.Для следующих амфолитов: HS , HSO 3 , HCO 3 , H 2 PO 4 , HPO 4 2 , H 2 O – составьте уравнения реакций этих частиц с водой, запишите выражения для констант кислотности и основности, выпишите значения этих констант из приложений 13 и 14. Определите, какие свойства, кислотные или основные преобладают у этих частиц?
8.Какие процессы могут происходить при растворении в воде фосфорной кислоты?
Сравнение реакционной способности сильных и слабых кислот.

12.5. Кислотно-основные реакции ионов оксония

И кислоты, и основания различаются по силе, по растворимости, по устойчивости и по некоторым другим характеристикам. Важнейшей из этих характеристик является сила. Наиболее характерно свойства кислот проявляются у сильных кислот. В растворах сильных кислот частицами-кислотами являются ионы оксония. Поэтому в этом параграфе мы рассмотрим реакции в растворах, протекающие при взаимодействии ионов оксония с различными веществами, содержащими частицы-основания. Начнем с самых сильных оснований.

а) Реакции ионов оксония с оксид-ионами

Среди очень сильных оснований важнейшим является оксид-ион, входящий в состав основных оксидов, которые, как вы помните, представляют собой ионные вещества. Этот ион - одно из сильнейших оснований. Поэтому основные оксиды (например, состава MO), даже не реагирующие с водой, легко реагируют с кислотами. Механизм реакции:

В этих реакциях оксид-ион не успевает перейти в раствор, а сразу реагирует с ионом оксония. Следовательно, реакция протекает на поверхности оксида. Такие реакции идут до конца, так как из сильной кислоты и сильного основания образуется очень слабый амфолит (вода).

Пример. Реакция азотной кислоты с оксидом магния:


MgO + 2HNO 3p = Mg(NO 3) 2p + H 2 O.

Так реагируют с сильными кислотами все основные и амфотерные оксиды, но если образуется нерастворимая соль, то реакция в некоторых случаях очень замедляется, так как слой нерастворимой соли препятствует проникновению кислоты к поверхности оксида (пример - реакция оксида бария с серной кислотой).

б) Реакции ионов оксония с гидроксид-ионами

Из всех частиц-оснований, существующих в водных растворах, гидроксид-ион является самым сильным основанием. Его константа основности (55,5) во много раз превышает константы основности остальных частиц-оснований. Гидроксид-ионы входят в состав щелочей и при их растворении переходят в раствор. Механизм реакции ионов оксония с гидроксид-ионами:

.

Пример 1. Реакция соляной кислоты с раствором гидроксида натрия:


HCl p + NaOH p = NaCl p + H 2 O.

Как и реакции с основными оксидами, такие реакции идут до конца (необратимы) потому, что в результате передачи протона ионом оксония (сильной кислотой, K K = 55,5) гидроксид-иону (сильному основанию, K О = 55,5) образовались молекулы воды (очень слабого амфолита, K K = K O = 1,8·10 -16).
Вспомним, что реакции кислот с основаниями (в том числе и со щелочами) называются реакциями нейтрализации.
Вы уже знаете, что в чистой воде присутствуют ионы оксония и гидроксид-ионы (за счет автопротолиза воды), но их концентрации равны и крайне незначительны: с (Н 3 О ) = с (ОН ) = 10 -7 моль/л. Поэтому их присутствие в воде практически незаметно.
То же наблюдается и в растворах веществ, не являющихся ни кислотами, ни основаниями. Такие растворы называют нейтральными.

Но если в воду добавить вещество-кислоту или вещество-основание, то в растворе появится избыток одного из этих ионов. Раствор станет кислым или щелочным.

Гидроксид-ионы входят в состав не только щелочей, но и практически нерастворимых оснований, а также амфотерных гидроксидов (амфотерные гидроксиды в этом отношении можно рассматривать как ионные соединения). Со всеми этими веществами ионы оксония также реагируют, причем, как и в случае основных оксидов, реакция протекает на поверхности твердого вещества. Механизм реакции для гидроксида состава M(OH) 2:

.

Пример 2. Реакция раствора серной кислоты с гидроксидом меди. Так как гидросульфат-ион довольно сильная кислота (K K 0,01), обратимостью его протолиза можно пренебречь и записать уравнения этой реакции следующим образом:

Cu(OH) 2 + 2H 3 O = Cu 2 + 4H 2 O
Cu(OH) 2 + H 2 SO 4р = CuSO 4 + 2H 2 O.

в) Реакции ионов оксония со слабыми основаниями

Как и в растворах щелочей, в растворах слабых оснований также присутствуют гидроксид-ионы, но их концентрация во много раз меньше, чем концентрация самих частиц-оснований (это отношение равно степени протолиза основания). Поэтому скорость реакции нейтрализации гидроксид-ионов во много раз меньше, чем скорость реакции нейтрализации самих частиц-оснований. Следовательно, преобладающей будет реакция между ионами оксония и частицами-основаниями.

Пример 1. Реакция нейтрализации соляной кислоты раствором аммиака:

.

В результате реакции получаются ионы аммония (слабая кислота, K K = 6·10 -10) и молекулы воды, но, так как один из исходных реагентов (аммиак) основание слабое (K O = 2·10 -5), то реакция обратима

Но равновесие в ней очень сильно сдвинуто вправо (в сторону продуктов реакции), настолько сильно, что обратимостью часто пренебрегают, записывая молекулярное уравнение этой реакции со знаком равенства:

HCl p + NH 3p = NH 4 Cl p + H 2 O.

Пример 2. Реакция бромоводородной кислоты с раствором гидрокарбоната натрия. Будучи амфолитом, гидрокарбонат-ион в присутствии ионов оксония ведет себя как слабое основание:

Образующаяся угольная кислота может содержаться в водных растворах лишь в очень небольших концентрациях. При увеличении концентрации она разлагается. Механизм разложения можно представить себе следующим образом:

Суммарные химические уравнения:

H 3 O + HCO 3 = CO 2 + 2H 2 O
HBr р + NaHCO 3р = NaBr р + CO 2 + H 2 O.

Пример 3. Реакции, протекающие при сливании растворов хлорной кислоты и карбоната калия. Карбонат-ион тоже слабое основание, хотя и более сильное, чем гидрокарбонат-ион. Реакции между этими ионами и ионом оксония полностью аналогичны. В зависимости от условий проведения, реакция может остановиться на стадии образования гидрокарбонат-иона, а может привести и к образованию углекислого газа:

а) H 3 O + CO 3 = HCO 3 + H 2 O
HClO 4р + K 2 CO 3р = KClO 4р + KHCO 3р;
б) 2H 3 O + CO 3 = CO 2 + 3H 2 O
2HClO 4р + K 2 CO 3р = 2KClO 4р + CO 2­ + H 2 O.

Аналогичные реакции протекают даже в том случае, когда соли, содержащие частицы-основания, нерастворимы в воде. Как и в случае основных оксидов или нерастворимых оснований, в этом случае реакция тоже протекает на поверхности нерастворимой соли.

Пример 4. Реакция между соляной кислотой и карбонатом кальция:
CaCO 3 + 2H 3 O = Ca 2 + CO 2 + 3H 2 O
CaCO 3р + 2HCl р = CaCl 2р + CO 2 + H 2 O.

Препятствием к проведению таких реакций может послужить образование нерастворимой соли, слой которой будет затруднять проникновение ионов оксония к поверхности реагента (например, в случае взаимодействия карбоната кальция с серной кислотой).

НЕЙТРАЛЬНЫЙ РАСТВОР, КИСЛЫЙ РАСТВОР, ЩЕЛОЧНОЙ РАСТВОР, РЕАКЦИЯ НЕЙТРАЛИЗАЦИИ.
1.Составьте схемы механизмов реакций ионов оксония со следующими веществами и частицами: FeO, Ag 2 O, Fe(OH) 3 , HSO 3 , PO 4 3 и Cu 2 (OH) 2 CO 3 . По схемам составьте ионные уравнения реакций.
2.С какими из следующих оксидов будут реагировать ионы оксония: CaO, CO, ZnO, SO 2 , B 2 O 3 , La 2 O 3 ? Составьте ионные уравнения этих реакций.
3.С какими из следующих гидроксидов будут реагировать ионы оксония: Mg(OH) 2 , B(OH) 3 , Te(OH) 6 , Al(OH) 3 ? Составьте ионные уравнения этих реакций.
4.Составьте ионные и молекулярные уравнения реакций бромоводородной кислоты с растворами следующих веществ: Na 2 CO 3 , K 2 SO 3 , Na 2 SiO 3 , KHCO 3 .
5.Составьте ионные и молекулярные уравнения реакций раствора азотной кислоты со следующими веществами: Cr(OH) 3 , MgCO 3 , PbO.
Реакции растворов сильных кислот с основаниями, основными оксидами и солями.

12.6. Кислотно-основные реакции слабых кислот

В отличии от растворов сильных кислот в растворах слабых кислот в качестве частиц-кислот присутствуют не только ионы оксония, но и молекулы самой кислоты, причем молекул кислоты во много раз больше, чем ионов оксония. Поэтому в этих растворах преобладающей реакцией будет реакция самих частиц-кислот с частицами-основаниями, а не реакции ионов оксония. Скорость реакций с участием слабых кислот всегда меньше скорости аналогичных реакций с участием сильных кислот. Часть этих реакций обратима, и тем больше, чем слабее участвующая в реакции кислота.

а) Реакции слабых кислот с оксид-ионами

Это единственная группа реакций слабых кислот, которые протекают необратимо. Скорость реакции зависит от силы кислоты. Некоторые слабые кислоты (сероводородная, угольная и др.) в реакции с малоактивными основными и амфотерными оксидами (CuO, FeO, Fe 2 O 3 , Al 3 O 3 , ZnO, Cr 2 O 3 и др.) не вступают.

Пример. Реакция, протекающая между оксидом марганца(II) и раствором уксусной кислоты. Механизм этой реакции:

Уравнения реакции:
MnO + 2CH 3 COOH = Mn 2 + 2CH 3 COO + H 2 O
MnO + 2CH 3 COOH р = Mn(CH 3 COO) 2р + H 2 O.(Соли уксусной кислоты называются ацетатами)

б) Реакции слабых кислот с гидроксид-ионами

В качестве примера рассмотрим, как реагируют с гидроксид-ионами молекулы фосфорной (ортофосфорной) кислоты:

В результате реакции получаются молекулы воды и дигидрофосфат-ионы.
Если после завершения этой реакции в растворе остаются гидроксид-ионы, то дигидрофосфат-ионы, являясь амфолитами, будут с ними реагировать:

Образуются гидрофосфат-ионы, которые, также являясь амфолитами, могут реагировать с избытком гидроксид-ионов:

.

Ионные уравнения этих реакций

H 3 PO 4 + OH H 2 PO 4 + H 2 O;
H 2 PO 4 + OH HPO 4 2 + H 2 O;
HPO 4 + OH PO 4 3 + H 2 O.

Равновесия этих обратимых реакций смещены вправо. В избытке раствора щелочи (например, NaOH) все эти реакции протекают практически необратимо, поэтому их молекулярные уравнения обычно записывают так:

H 3 PO 4р + NaOH р = NaH 2 PO 4р + H 2 O;
NaH 2 PO 4р + NaOH р = Na 2 HPO 4р;
Na 2 HPO 4р + NaOH р = Na 3 PO 4р + H 2 O.

Если целевым продуктом этих реакций является фосфат натрия, то можно записать и суммарное уравнение:
H 3 PO 4 + 3NaOH = Na 3 PO 4 + 3H 2 O.

Таким образом, молекула фосфорной кислоты, вступая в кислотно-основные взаимодействия, может последовательно отдавать один, два или три протона. В аналогичном процессе молекула сероводородной кислоты (H 2 S) может отдавать один или два протона, а молекула азотистой кислоты (HNO 2) - только один протон. Соответственно, эти кислоты относят к трехосновным, двухосновным и одноосновным.

Соответствующая характеристика основания называется кислотностью.

Примеры однокислотных оснований - NaOH, KOH; примеры двукислотных оснований - Ca(OH) 2 , Ba(OH) 2 .
Наиболее сильные из слабых кислот могут реагировать и с гидроксид-ионами, входящими в состав нерастворимых оснований и даже амфотерных гидроксидов.

в) Реакции слабых кислот со слабыми основаниями

Практически все эти реакции обратимы. В соответствии с общим правилом равновесия в таких обратимых реакциях смещены в сторону более слабых кислот и более слабых оснований.

ОСНОВНОСТЬ КИСЛОТЫ, КИСЛОТНОСТЬ ОСНОВАНИЯ.
1.Составьте схемы механизмов реакций, протекающих в водном растворе между муравьиной кислотой и следующими веществами: Fe 2 O 3 , KOH и Fe(OH) 3 . По схемам составьте ионные и молекулярные уравнения этих реакций. (ион тетрааквацинка) и 3aq aq + H 3 O .
4.В каком направлении сместится равновесие в этом растворе а) при его разбавлении водой, б) при добавлении в него раствора сильной кислоты?